Micro Fluidic Channel Machining on Fused Silica Glass Using Powder Blasting
نویسندگان
چکیده
In this study, micro fluid channels are machined on fused silica glass via powder blasting, a mechanical etching process, and the machining characteristics of the channels are experimentally evaluated. In the process, material removal is performed by the collision of micro abrasives injected by highly compressed air on to the target surface. This approach can be characterized as an integration of brittle mode machining based on micro crack propagation. Fused silica glass, a high purity synthetic amorphous silicon dioxide, is selected as a workpiece material. It has a very low thermal expansion coefficient and excellent optical qualities and exceptional transmittance over a wide spectral range, especially in the ultraviolet range. The powder blasting process parameters affecting the machined results are injection pressure, abrasive particle size and density, stand-off distance, number of nozzle scanning, and shape/size of the required patterns. In this study, the influence of the number of nozzle scanning, abrasive particle size, and pattern size on the formation of micro channels is investigated. Machined shapes and surface roughness are measured using a 3-dimensional vision profiler and the results are discussed.
منابع مشابه
Micro Machining of Injection Mold Inserts for Fluidic Channel of Polymeric Biochips
Recently, the polymeric micro-fluidic biochip, often called LOC (lab-on-a-chip), has been focused as a cheap, rapid and simplified method to replace the existing biochemical laboratory works. It becomes possible to form miniaturized lab functionalities on a chip with the development of MEMS technologies. The micro-fluidic chips contain many micro-channels for the flow of sample and reagents, mi...
متن کاملAn Experimental Study on the Fabrication of Glass-based Acceleration Sensor Body Using Micro Powder Blasting Method
This study investigated the feasibility of the micro powder blasting technique for the micro fabrication of sensor structures using the Pyrex glass to replace the existing silicon-based acceleration sensor fabrication processes. As the preliminary experiments, the effects of the blasting pressure, the mass flow rate of abrasive and the number of nozzle scanning times on erosion depth of the Pyr...
متن کاملFabrication of Biochips with Micro Fluidic Channels by Micro End-milling and Powder Blasting
For microfabrications of biochips with micro fluidic channels, a large number of microfabrication techniques based on silicon or glass-based Micro-Electro-Mechanical System (MEMS) technologies were proposed in the last decade. In recent years, for low cost and mass production, polymer-based microfabrication techniques by microinjection molding and micro hot embossing have been proposed. These t...
متن کاملHigh resolution micro ultrasonic machining for trimming 3D microstructures
This paper reports on the evaluation of a high resolution micro ultrasonic machining (HR-μUSM) process suitable for post fabrication trimming of complex 3D microstructures made from fused silica. Unlike conventional USM, the HR-μUSM process aims for low machining rates, providing high resolution and high surface quality. The machining rate is reduced by keeping the micro-tool tip at a fixed dis...
متن کاملFabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching.
We present novel results obtained in the fabrication of high-aspect ratio micro-fluidic microstructures chemically etched from fused silica substrates locally exposed to femtosecond laser radiation. A volume sampling method to generate three-dimensional patterns is proposed and a systematic SEM-based analysis of the microstructure is presented. The results obtained gives new insights toward a b...
متن کامل